Laplacian Editing
[Sorkine et al. SGP 2004]
What’s are Details?
• Detail = surface – smooth (surface)
• Smoothing = averaging
What’s the Difference?
Laplacian Editing
- Local detail representation – enables detail preservation through various modeling tasks
- Representation with sparse matrices
- Efficient linear surface reconstruction
Editing framework
- The spatial constraints will serve as modeling constraints
- Reconstruct the surface every time the modeling constraints are changed
Detail constraints: LX=δ
Modeling constraints: xj=cj,j∈ {j1,j2,…jk}
用户对 mesh 的一个点进行编辑,算法更新其他的点,得到合理结果。
本质:保持 mesh 的 Laplace 不变,因为 Laplace 描述了曲面的特征。
准确说是 Laplace 长度不变,方向有可能旋转。
Direct Detail Preserving
Rotation Transformation
(b1−bi⋮bN−bi)=(a1−ai⋮aN−ai)Ri
Reconstruction
• Soft constraints
LTLv=LTδ
Variational Viewpoint
• Laplacian Approximation
˜X=argminX(||LX−δ(x)||2+∑j∈Cw2||xj−cj||2).
• Gradient Approximation
minϕ∬Ω||∇ϕ−w||2dA,
User Interfaces
• ROI is bounded by a belt (static anchors)
• Manipulation through handle(s)
Results
Detail transfer and mixing
• “Peel“ the coating of one surface and transfer to another
第一步:Parameterization onto a common domain and elastic warp to align the features, if needed
第二步:Detail peeling:
ξi=δi−˜δi
第三步:Changing local frames:
第四步:Reconstruction of target surface from: δtarget
δtarget=δ′i+ξ′i
Examples
Mixing Laplacians
• Taking weighted average of δi and δ‘i
Mesh transplanting
- The user defines
• Part to transplant
• Where to transplant
• Spatial orientation and scale - Topological stitching
- Geometrical stitching via Laplacian mixing
• Details gradually change in the transition area
提取与还原即 Encoder& Decoder.Laplace 是手工方法,E&D是AI方法。
本文出自CaterpillarStudyGroup,转载请注明出处。 https://caterpillarstudygroup.github.io/GAMES102_mdbook/