Laplacian Editing

[Sorkine et al. SGP 2004]

What’s are Details?

• Detail = surface – smooth (surface)
• Smoothing = averaging

What’s the Difference?

Laplacian Editing

  • Local detail representation – enables detail preservation through various modeling tasks
  • Representation with sparse matrices
  • Efficient linear surface reconstruction

Editing framework

  • The spatial constraints will serve as modeling constraints
  • Reconstruct the surface every time the modeling constraints are changed

Detail constraints: \(LX=\delta \)
Modeling constraints: \(x_j=c_j,j\in\) {\(j_1,j_2,\dots j_k\)}

用户对 mesh 的一个点进行编辑,算法更新其他的点,得到合理结果。
本质:保持 mesh 的 Laplace 不变,因为 Laplace 描述了曲面的特征。
准确说是 Laplace 长度不变,方向有可能旋转。

Direct Detail Preserving

Rotation Transformation

$$ \begin{pmatrix}b_1-b_i  \\\vdots  \\b_N-b_i \end{pmatrix}=\begin{pmatrix}a_1-a_i  \\\vdots  \\a_N-a_i \end{pmatrix}R_i $$

Reconstruction

• Soft constraints

$$ L^TLv=L^T\delta $$

Variational Viewpoint

• Laplacian Approximation

$$ \tilde{X} =\underset{X}{argmin} (||LX-\delta ^{(x)}||^2+\sum _{j\in C}w^2||x_j-c_j||^2). $$

• Gradient Approximation

$$ \underset{\phi }{min} \iint _\Omega ||\nabla \phi -w||^2dA, $$

User Interfaces

• ROI is bounded by a belt (static anchors)
• Manipulation through handle(s)

Results

Detail transfer and mixing

• “Peel“ the coating of one surface and transfer to another

第一步:Parameterization onto a common domain and elastic warp to align the features, if needed

第二步:Detail peeling:

$$ \xi _i=\delta _i-\tilde{\delta } _i $$

第三步:Changing local frames:

第四步:Reconstruction of target surface from: \(\delta _{target}\)

$$ \delta _{target} ={\delta}' _i+{\xi}' _i $$

Examples

Mixing Laplacians

• Taking weighted average of \(\delta _i\) and \(\delta ^‘_i\)

Mesh transplanting

  • The user defines
    • Part to transplant
    • Where to transplant
    • Spatial orientation and scale
  • Topological stitching
  • Geometrical stitching via Laplacian mixing

• Details gradually change in the transition area


提取与还原即 Encoder& Decoder.Laplace 是手工方法,E&D是AI方法。


本文出自CaterpillarStudyGroup,转载请注明出处。 https://caterpillarstudygroup.github.io/GAMES102_mdbook/