Processing math: 100%

Laplacian Editing

[Sorkine et al. SGP 2004]

What’s are Details?

• Detail = surface – smooth (surface)
• Smoothing = averaging

What’s the Difference?

Laplacian Editing

  • Local detail representation – enables detail preservation through various modeling tasks
  • Representation with sparse matrices
  • Efficient linear surface reconstruction

Editing framework

  • The spatial constraints will serve as modeling constraints
  • Reconstruct the surface every time the modeling constraints are changed

Detail constraints: LX=δ
Modeling constraints: xj=cj,j {j1,j2,jk}

用户对 mesh 的一个点进行编辑,算法更新其他的点,得到合理结果。
本质:保持 mesh 的 Laplace 不变,因为 Laplace 描述了曲面的特征。
准确说是 Laplace 长度不变,方向有可能旋转。

Direct Detail Preserving

Rotation Transformation

(b1bibNbi)=(a1aiaNai)Ri

Reconstruction

• Soft constraints

LTLv=LTδ

Variational Viewpoint

• Laplacian Approximation

˜X=argminX(||LXδ(x)||2+jCw2||xjcj||2).

• Gradient Approximation

minϕΩ||ϕw||2dA,

User Interfaces

• ROI is bounded by a belt (static anchors)
• Manipulation through handle(s)

Results

Detail transfer and mixing

• “Peel“ the coating of one surface and transfer to another

第一步:Parameterization onto a common domain and elastic warp to align the features, if needed

第二步:Detail peeling:

ξi=δi˜δi

第三步:Changing local frames:

第四步:Reconstruction of target surface from: δtarget

δtarget=δi+ξi

Examples

Mixing Laplacians

• Taking weighted average of δi and δi

Mesh transplanting

  • The user defines
    • Part to transplant
    • Where to transplant
    • Spatial orientation and scale
  • Topological stitching
  • Geometrical stitching via Laplacian mixing

• Details gradually change in the transition area


提取与还原即 Encoder& Decoder.Laplace 是手工方法,E&D是AI方法。


本文出自CaterpillarStudyGroup,转载请注明出处。 https://caterpillarstudygroup.github.io/GAMES102_mdbook/