Point based editing要解决的问题
Fix 红圈上的点,Drag one or more vertices,更新红圈内的点
本质数学问题:数据插值问题,同时让f满足光滑、性质保持等约束。
minE(f)s.t.f(xi)=yi,i=1,2,…,n
(1) RBF‐based Editing
(2) Moving Least Squares Method
[Siggraph 2006]
(3) Vector Field Based Deformations
[Siggraph 2006]
原理
在空间定义了一个连续的场,物理在场里面流动产生新的变化
Basic model: Moving vertex along the deformation orbit – defined by the path lines of a vector field v.
Given a time‐dependent vector field V(X,t), a Path Line X(t) in space is an integral.
Vector Field Selection:
- Deformation Request:
• No self‐intersection
• Volume‐preserving
• Details‐preserving
• Smoothness of shape in deformation - Divergence‐free Vector Field: V=(V1,V2,V3)
divV=∂V1∂x+∂V2∂y+∂V3∂z=0
[38:39]优点:物体不会产生自交
(4) Laplacian Editing [Sorkine et al. SGP 2004]
优点:
• Laplacian能体现局部细节,因此Laplacian 尽量不变可保证局部细节
• Representation with sparse matrices
• Efficient linear surface reconstruction
νi=∑j∈N(i)wjνj+δi
优化目标
- Laplacian Approximation
˜X=argminX(||LX−δ(x)||2+∑j∈Cω2||xj−cj||2)
第一项:局部细节不变,第二项:满足用户要求
- Gradient Approximation
minϕ∬Ω||∇ϕ−W||2dA,
求解线性方程组
LX=δxj=cj,j∈{j1,j2,…,jk}
Results
Detail transfer and mixing
这是基于Laplace的point based的一个应用
[40:45] 把一个 mesh 的 Laplacian 细节迁移到另一个 mesh上
要求网格一一对应
方法:Mixing Laplacians,即Taking weighted average of δi and δ′i
Mesh transplanting
这是基于Laplace的point based的一个应用
[41:29] 把一个模型拼接到另一个模型上
可能用[0,1]控制Laplace的混合比例,造成渐变效果。
Invariance – solutions
- Explicit transformation of the differential coordinates prior to surface reconstruction
- Lipman, Sorkine, Cohen‐Or, Levin, Rössl and Seidel [SMI 04], “Differential Coordinates for Interactive Mesh Editing”,
- Estimation of rotations from naive reconstruction
- Lipman, Sorkine, Cohen‐Or, Levin, Rössl and Seidel [SMI 04], “Differential Coordinates for Interactive Mesh Editing”,
- Yu, Zhou, Xu, Shi, Bao, Guo and Shum [SIGGRAPH 04], “Mesh Editing With Poisson‐Based Gradient Field Manipulation”,
- Propagation of handle transformation to the rest of the ROI using geodesic distances
- Zayer, Rössl, Karni and Seidel [EG 05], “Harmonic Guidance for Surface Deformation”,
- Propagation of handle transformation to the rest of the ROI using harmonic functions
(5) Poisson Mesh Editing
Yu et al. Mesh Editing With Poisson-Based Gradient Field Manipulation. Siggraph 2004.
这个方法起源于一种图片算法,把图像一部分融合到另外一个图像.让边界无缝融合,用目标的颜色结合源的梯度。
把这个方法用到3D图形上,源的梯度就演变为源的Laplace。
• The representation: the gradients of the functions X, Y, Z on each triangle of the mesh
• Deformation: propagate the transformation of the handle onto the ROI using geodesic distances
• Inspiration: Poisson Image Editing [Pérez et al. 03]
• Reconstruct a function from its gradients via the Poisson equation:
argminf∫Ω||∇f−w||2,s.t.f|∂Ω=f∗|∂Ω
⇓
Δf=divwwithf|∂Ω=f∗|∂Ω
(6)(7) As‐rigid‐as‐possible Deformation
方法起源于一种2D图形算法:
把三角形当作刚体来形变。然后再缝合。
后引申到3D:
[Sorkine and Alexa, As‐Rigid‐As‐Possible Surface Modeling. SGP 2007]
Ask all star edges to transform rigidly by some rotation R, then the shape of the cell is preserved
minv′n∑i=1∑j∈N(i)||(v′i−v′j)−Ri(vi−vj)||2
s.t.v′j=cj,j∈C
效果:
deformation 时保持 Laplacian 旋转
优点:中间会膨胀
(8) Linear Rotation‐invariant Coordinates
[Lipman et al. Siggraph 05]
保持曲面的第一形和第二形. 没听懂
• Keep a local frame at each vertex
• Prescribe changes to some selected frames
Local frame:
{ai,bi,ni}
• Encode the differences between adjacent frames
• Solve for the new frames in least‐squares sense
ai−aj=α1ai+α2bi+α3nibi−bj=β1ai+β2bi+β3nini−nj=γ1ai+γ2bi+γ3ni⋯⋯constraints
- Reconstruction:
• After having the frames, solve for positions Frame‐based deformations
Results
本文出自CaterpillarStudyGroup,转载请注明出处。 https://caterpillarstudygroup.github.io/GAMES102_mdbook/