Loading [MathJax]/jax/output/HTML-CSS/jax.js

Point based editing要解决的问题

Fix 红圈上的点,Drag one or more vertices,更新红圈内的点

本质数学问题:数据插值问题,同时让f满足光滑、性质保持等约束。

minE(f)s.t.f(xi)=yi,i=1,2,,n

(1) RBF‐based Editing

(2) Moving Least Squares Method

[Siggraph 2006]

(3) Vector Field Based Deformations

[Siggraph 2006]

原理

在空间定义了一个连续的场,物理在场里面流动产生新的变化

Basic model: Moving vertex along the deformation orbit – defined by the path lines of a vector field v.

Given a time‐dependent vector field V(X,t), a Path Line X(t) in space is an integral.

Vector Field Selection:

  • Deformation Request:
    • No self‐intersection
    • Volume‐preserving
    • Details‐preserving
    • Smoothness of shape in deformation
  • Divergence‐free Vector Field: V=(V1,V2,V3)

divV=V1x+V2y+V3z=0

[38:39]优点:物体不会产生自交

(4) Laplacian Editing [Sorkine et al. SGP 2004]

优点:
• Laplacian能体现局部细节,因此Laplacian 尽量不变可保证局部细节
• Representation with sparse matrices
• Efficient linear surface reconstruction

νi=jN(i)wjνj+δi

优化目标

  • Laplacian Approximation

˜X=argminX(||LXδ(x)||2+jCω2||xjcj||2)

第一项:局部细节不变,第二项:满足用户要求

  • Gradient Approximation

minϕΩ||ϕW||2dA,

求解线性方程组

LX=δxj=cj,j{j1,j2,,jk}

Results

Detail transfer and mixing

这是基于Laplace的point based的一个应用

[40:45] 把一个 mesh 的 Laplacian 细节迁移到另一个 mesh上

要求网格一一对应

方法:Mixing Laplacians,即Taking weighted average of δi and δi

Mesh transplanting

这是基于Laplace的point based的一个应用
[41:29] 把一个模型拼接到另一个模型上

可能用[0,1]控制Laplace的混合比例,造成渐变效果。

Invariance – solutions

  • Explicit transformation of the differential coordinates prior to surface reconstruction
    • Lipman, Sorkine, Cohen‐Or, Levin, Rössl and Seidel [SMI 04], “Differential Coordinates for Interactive Mesh Editing”,
      • Estimation of rotations from naive reconstruction
  • Yu, Zhou, Xu, Shi, Bao, Guo and Shum [SIGGRAPH 04], “Mesh Editing With Poisson‐Based Gradient Field Manipulation”,
    • Propagation of handle transformation to the rest of the ROI using geodesic distances
  • Zayer, Rössl, Karni and Seidel [EG 05], “Harmonic Guidance for Surface Deformation”,
    • Propagation of handle transformation to the rest of the ROI using harmonic functions

(5) Poisson Mesh Editing

Yu et al. Mesh Editing With Poisson-Based Gradient Field Manipulation. Siggraph 2004.

这个方法起源于一种图片算法,把图像一部分融合到另外一个图像.让边界无缝融合,用目标的颜色结合源的梯度。
把这个方法用到3D图形上,源的梯度就演变为源的Laplace。

The representation: the gradients of the functions X, Y, Z on each triangle of the mesh
Deformation: propagate the transformation of the handle onto the ROI using geodesic distances

• Inspiration: Poisson Image Editing [Pérez et al. 03]

• Reconstruct a function from its gradients via the Poisson equation:

argminfΩ||fw||2,s.t.f|Ω=f|Ω

Δf=divwwithf|Ω=f|Ω

(6)(7) As‐rigid‐as‐possible Deformation

方法起源于一种2D图形算法:

把三角形当作刚体来形变。然后再缝合。

后引申到3D:

[Sorkine and Alexa, As‐Rigid‐As‐Possible Surface Modeling. SGP 2007]

Ask all star edges to transform rigidly by some rotation R, then the shape of the cell is preserved

minvni=1jN(i)||(vivj)Ri(vivj)||2

s.t.vj=cj,jC

效果:

deformation 时保持 Laplacian 旋转
优点:中间会膨胀

(8) Linear Rotation‐invariant Coordinates

[Lipman et al. Siggraph 05]

保持曲面的第一形和第二形. 没听懂

• Keep a local frame at each vertex
• Prescribe changes to some selected frames

Local frame:
{ai,bi,ni}

• Encode the differences between adjacent frames
• Solve for the new frames in least‐squares sense

aiaj=α1ai+α2bi+α3nibibj=β1ai+β2bi+β3nininj=γ1ai+γ2bi+γ3niconstraints

  • Reconstruction:
    • After having the frames, solve for positions Frame‐based deformations

Results


本文出自CaterpillarStudyGroup,转载请注明出处。 https://caterpillarstudygroup.github.io/GAMES102_mdbook/