Processing math: 64%

回顾

R3中的参数曲面:link
参数化(Parameterization):link
参数化的重要性:link

参数化期望保持的几何性质

• 保角映射(angle‐preserving):conformal(共形)
• 保面积映射(area‐preserving):authalic
• 等距映射(isometric):conformal + authalic

👆 f is approximated by piecewise linear maps between pairs of triangles

参数化引起的扭曲

Low distortion

扭曲来源

R 把3D三角形旋转为平面三角形。
ϕ是两个平面三角形之间的变形。扭曲都来自ϕ

ϕ2D3×3.L(2×2)
线性变换都可以用transformation matrix表示,都可以通过矩阵的性质来分析变换特点

扭曲度量

L=U(σ100σ2)V

σ2σ1

L2×2SVD,σ1σ2是奇异值。 

• angle‐preserving (conformal) σ1=σ2

• area‐preserving (authalic) σ1σ2

• length‐preserving (isometric) σ1=σ2=1

Local Injectivity

Flip free triangles

翻转度量

翻转σ1σ2<0

Distortion (Flip/Foldover)

Methods of Mesh Parameterization

Tutte’s method and its variants

Tutte’s embedding method

Tutte’s method [Tutte 1963; Floater 1997, 2003]

link

外部点:映射到 convex boundary 上。
内部点:1 邻域点的线性组合,权自己定义。通过求解稀疏方程组确定点的位置。
优点:简单、不翻转。
缺点:扭曲大。

Variants of Tutte’s embedding method

Geometry‐based optimization methods

• Representation based methods [Sheffer and Sturler 2001; Sheffer et al. 2005; Chien et al. 2016b; Fu and Liu 2016]
• ARAP [Sorkine and Alex 2007; Liu et al. 2008]
• Bounded distortion methods [Lipman 2012; Aigerman et al. 2014; Kovalsky et al. 015]

Angle Based Flattening (ABF) & ABF++

[Sheffer and Sturler 2001; Sheffer et al. 2005]

基于角度的展开,把角度当作变量,求解参数化的网格

目标:minimize (relative) deviation of angles

F(α)=i,jwji(αjiβji)2

Initial choice for weights:

wji=βj2i

Constraints:To avoid flipped triangles

g1(α)αjiε

g2(α)α1i+α2i+α3i=π

g3(α)kαji(k)=2π

g4(α)ksin(αj(k)1i)ksin(αj(k)+1i)=0

l1l2=sin(α1)sin(α2)

l1l2l2l1=sin(α1)sin(α2)sin(αi)sin(αj)

求解:用 Lagrange 算法解带约束的优化问题

Simplex Assembly [Fu and Liu 2016]

优化三角形变换的系数

✅Instead of vertex positions, treat the affine transformation as variables
✅Use a barrier function to prevent the inversion
✅No theoretically guaranteed to avoid foldovers

[Fu and Liu. Computing Inversion‐Free Mappings by Simplex Assembly. Siggraph Asia 2016]

Foldover free guaranteed optimization methods

[Smith and Schaefer 2015; Kovalsky et al. 2016; Jiang et al. 2017; Claici et al. 2017; Rabinovich et al. 2017; Shtengel et al. 2017; Zhu et al. 2018]

以 Tuttle 算法为基础,调整边界点位置,减少扭曲

Flip‐free parameterization methods

  • Start with a flip‐free (valid) initialization
  • Reducing the distortion while guaranteeing the validity
    • Generally non‐convex nonlinear optimization

红色表示扭曲大,白色表示扭曲少

调整的同时移动顶点,减少扭曲,关键是如何度量扭曲

度量扭曲的方法[22:43](最后一个最常用)

目标

min

s.t \sigma _1\sigma _2>0, \forall t

• The cost function is highly nonlinear and nonconvex
• The constraints are nonlinear
• The Heissian matrix is highly non‐definite

Computationally expensive for large scale meshes!

求解

Input: a valid parameterization initialization 𝑥_0
Repeat
p=-H^{-1}\nabla E(x)
How to find a good decent direction?

𝛼_{max}← injective maximal search step
𝛼 ←line search by backtracking from 𝛼_{max}
x ← 𝒙 + 𝛼p

Until converged
Output: a locally injective parameterization

局限性:非线性、非凸问题、且参数多
因此优化效率低

More

❗ 后面没展开讲的方法,就不记了,没讲清楚,记了也没用

AQP:利用离散 Laplacian 作为 Hessian 的近似
SLIM: \dots ,加权 \dots
AKVF:\dots 向量场算子\dots
CM:使用隐式 Laplacian 矩阵,二阶方法、速度更快
各种方法都是找更好的H近似,使得优化过程更快更稳定。

  • Accelerated Quadratic Proxy (AQP)

Kovalsky et al. Accelerated Quadratic Proxy for eometric Optimization. Siggraph 2016.

  • Scalable Locally Injective Mappings (SLIM)

Rabinovich et al. Scalable Locally Injective Mappings. Siggraph 2017.

  • Isometry‐Aware Preconditioning (AKVF)

Claici et al. Isometry‐Aware Preconditioning for Mesh Parameterization. SGP 2017.

  • Composite Majorization (CM)

Shtengel et al. Geometric Optimization via Composite Majorization. Siggraph 2017.

  • Blended Cured Quasi‐Newton (BCQN)

Zhu et al. Blended Cured quasi‐Newton for Distortion Optimization. Siggraph 2018.

Progressive Paramerization

• Near‐degenerate triangles (i.e., large distortion) in the initializations by Tutte’s method
• Small iterative step and slow convergence in existing methods
• Key: even one extremely large distortion term can restrict the line search step size!

[Ligang Liu et al. Progressive Parameterizations. Siggraph 2018]

问题描述:
[图28:52]以脖子为边界。头挤在中间,中间扭曲很大⇒能量大⇒下降慢
解决方法:
[图29:29] 不优化整体,或寻找更好的H逼近,而是中间那区域
*个人感觉不 make sense *
[图30:35]

[Ligang Liu et al. Progressive Parameterizations. Siggraph 2018]


本文出自CaterpillarStudyGroup,转载请注明出处。 https://caterpillarstudygroup.github.io/GAMES102_mdbook/