Shape Morphing

要解决的问题

给定头尾模型,生成中间的模型,常用于做关键帧动画。

  • Input: two meshes source & target
    • Frames at \(t_0\) and \(t_n\)
  • Output: sequence of intermediate meshes
    • Frames \(t_1\) to \(t_{n‐1}\)
    • For each point on source/target model specify location at time \(t_i\) consistent with source & target

Wraping VS Morphing

  • Warping: Unary Op
    • Given Object A and F(t), find Object B

  • Morphing: Binary Op
    • Given Object A and Object B, find F(t)

Rules for Good Morphing

  • Natural
    • Keep as much as possible of the two shapes during the transformation
      • Volume, curvature, area, etc...
    • Subjective aesthetic criteria
  • User control
    • intuitive
    • not too heavy
    • can be adapted to user's knowledge

Two Sub‐Problems

  • Correspondence problem

    • Compatible meshes
    • For each point on source/target meshes find corresponding point on second mesh = Parameterization

  • Path problem

    • Inbetween shapes
    • Specify trajectory in time for each point
      • For mesh – specify vertex trajectory

1. Vertex Correspondence

目标

Each vertex on source mesh mapped to vertex on target (and vice versa)

挑战

1.1 Parameterization

To compute map between source mesh S and target mesh T parameterize both on common domain D:

$$ F_s:S \to D\\ F_t:S \to D\\ F_{st}:F_t^{-1} F_s $$

Common domain options

  • 2D patch(es) – works for genus 0 + boundary
    • Use convex boundary (why?)
  • Sphere
  • Base mesh

Lee et al. 1999

1.4 Decomposition Based

[Shlafman et al. 2002]

分解成部分,每个部分分别对应。
大问题分解成小问题

1.5 Component Based

1.6 Many Recent Works

mapping问题,网络A映射到网络B,使得映射后扭曲极小

1.7 Error‐Bounded Compatible Remeshing

Yang et al. Error‐Bounded Compatible Remeshing. Siggraph 2020.

• Optimization based method

1.8 Different Topologies

[DeCarlo et al. 1996]

More: Correspondences between planar shapes – Matching

• Physically Based Method [Sederberg et al. 1992]

• Curve Aligning [Sebastian et al. 2003]

$$ \mu[g]=\int_{C}\left|\frac{\partial}{\partial s}(\bar{C}(\bar{s})-C(s))\right|^{2} d s+R \int_{C}(\kappa(s)-\bar{\kappa}(\bar{s}))^{2} d s $$

• Perceptually Based Method [Liu et al. 2004]

2. Vertex Path (Trajectory)

  • Input:
    • All vertices on source & target have one‐to‐one correspondence with each other
    • Each vertex has two 3D coords vFc1 (source) and vFc2 (target)

  • Output: generate the intermediate shapes from two shapes

Simplest Method: Linear Interpolation

  • Linear interpolation between corresponding points

优点:Work well for many cases,Simple and easy
缺点:Shrinkage

Intrinsic Approach

Sederberg et al. 1993

不插值顶点,而是插值多边形的边长和夹角

Fourier Approach

插件付里叶系数

$$ \begin{array}{l} \begin{bmatrix}x(t) \\y(t) \end{bmatrix} \\ =\begin{bmatrix}a_0 \\c_0 \end{bmatrix}+ {\textstyle \sum_{k=1}^{\infty }} \begin{bmatrix} a_k &b_k \\ c_k &d_k \end{bmatrix}\begin{bmatrix}\cos(2\pi kt) \\ \sin(2\pi kt) \end{bmatrix} \ \end{array} $$

Wavelet Approach

Zhang et al. 2000

• Wavelet decomposition

Star Skeleton Representation

[Shapira et al. 1995]

Interior Based Approach

不插值顶点,而是插值三角形的仿射变换(旋转和平移)
好处是能同时进行纹理的插值

  • Based on compatible triangulation
    • [Gotsman and Surazhsky, 1999‐2001]
    • As‐rigid‐as‐possible [Alexa et al. 2000]

Morphing between Different Topologies

Liu et al. 2005

Implicit Approaches

Construct a 4D function which interpolates two shapes (with iso‐value 0 and 1 respectively)

截面就是插值结果
优点是不需要找对应关系
缺点是不可控制

Distance Field

[Cohen-Or et al. 1998]

• Distance field of a shape

Variational Implicit Function

$$ f(X)=\sum_{j=1}^{n} d_j\phi (X-C_j)+P(X) $$

用RBF构造插值函数

Polymorph: Morphing between multiple shapes


本文出自CaterpillarStudyGroup,转载请注明出处。 https://caterpillarstudygroup.github.io/GAMES102_mdbook/