补充1: Cross Product as a Matrix Product
We can convert the cross product \(\mathbf{r}\times\) into a matrix product \(\mathbf{r}^*\).

✅ \(\mathbf{r}^*\) 是 \(\mathbf{r}\) 的 cross matrix.
目的:用矩阵形式代替叉乘形式,方便公式化简
补充2:极性分解
极性分解
Singular value decomposition says any matrix can be decomposed into: rotation,scaling and rotation: \(\mathbf{A = UDV} ^T\).

We can rotate the object back before the final rotation: \(\mathbf{A} = (\mathbf{UV} ^T)(\mathbf{VDV} ^T)\).

✅ \(\mathbf{A} = (\mathbf{UV}^T)(\mathbf{VDV}^T) =\mathbf{RS}\)
\(\mathbf{R}\) 代表全局旋转,\(\mathbf{S}\)代表本地形变,扔掉S保留R。

$$ \mathbf{A=RS} $$
$$ \mathbf{A} ^T\mathbf{A} = \mathbf{S} ^T\mathbf{S} = \mathbf{S} ^2 $$
分解结果:unique
本文出自CaterpillarStudyGroup,转载请注明出处。
https://caterpillarstudygroup.github.io/GAMES103_mdbook/