P23
Boundary Conditions
Dirichlet boundary
A Dirichlet boundary assumes that the boundary height \(H_{i+1}\) is constant. It’s considered as an open boundary.
$$ ℎ_{i+1}−ℎ_i+ℎ_{i−1}−ℎ_i=H_{i+1}−ℎ_i+ℎ_{i−1}−ℎ_i $$
✅ 这种方法用于模拟开放的水面,例如大海的区域、假设被模拟的区域外是静止的水面、高度为常数,(Dirichlet)
✅ \(h\)为边界内,\(H\)为边界外。
P25
Algorithm with Neumann Boundaries
Extending the simulator to 3D is also straightforward.
Neumann boundary
A Neumann boundary specifies the boundary derivatives. For example, a zero-derivative boundary means \(ℎ_{i+1}≡ℎ_i\). It’s considered as a closed boundary.
$$ ℎ_{i+1}−ℎ_i+ℎ_{i−1}−ℎ_i=ℎ_{i−1}−ℎ_i $$
✅ Neuman 用于模拟有边界水域,例如池堂、假设边界上没有水流交换。
P24
本文出自CaterpillarStudyGroup,转载请注明出处。
https://caterpillarstudygroup.github.io/GAMES103_mdbook/