P23

Boundary Conditions

Dirichlet boundary

A Dirichlet boundary assumes that the boundary height \(H_{i+1}\) is constant. It’s considered as an open boundary.

$$ ℎ_{i+1}−ℎ_i+ℎ_{i−1}−ℎ_i=H_{i+1}−ℎ_i+ℎ_{i−1}−ℎ_i $$

✅ 这种方法用于模拟开放的水面,例如大海的区域、假设被模拟的区域外是静止的水面、高度为常数,(Dirichlet)
✅ \(h\)为边界内,\(H\)为边界外。

P25

Algorithm with Neumann Boundaries

Extending the simulator to 3D is also straightforward.

Neumann boundary

A Neumann boundary specifies the boundary derivatives. For example, a zero-derivative boundary means \(ℎ_{i+1}≡ℎ_i\). It’s considered as a closed boundary.

$$ ℎ_{i+1}−ℎ_i+ℎ_{i−1}−ℎ_i=ℎ_{i−1}−ℎ_i $$

✅ Neuman 用于模拟有边界水域,例如池堂、假设边界上没有水流交换。

P24


本文出自CaterpillarStudyGroup,转载请注明出处。

https://caterpillarstudygroup.github.io/GAMES103_mdbook/