P3

A Grid Representation and Finite Differencing

P4

A Regular Grid Representation

✅ 把场定义在标准格子上的好处:(1)把物理量定义在格子的中心(2)计算导数或利用导数进行微分计算变得容易了。
✅ 上节课grid用1D来表示2D,2D表示3D,不是真正的grid方法。
🔎 Central Differencing:L10.

P6

Finite Differencing on Grid

一阶层数

The grid is very friendly with central differencing.

$$\frac{∂f_{i+0.5,j}}{∂x}≈\frac{f_{i+1,j}−f_{i,j}}{ℎ}$$

P7

二阶导数

The grid is very friendly with central differencing.

P8

Discretized Laplacian

We can then obtain the discretized Laplacian operator on grid.

$$ \frac{∂^2f_{i,j}}{∂x^2}≈\frac{\frac{∂f_{i−0.5,j}}{∂x}−\frac{∂f_{i+0.5,j}}{∂x}}{ℎ}≈\frac{f_{i−1,j}+f_{i+1,j}−2f_{i,j}}{ℎ^2} $$

$$ \frac{∂^2f_{i,j}}{∂y^2}≈\frac{\frac{∂f_{i,j+0.5}}{∂y}−\frac{∂f_{i,j−0.5}}{∂y}}{ℎ} ≈\frac{f_{i,j−1}+f_{i,j+1}−2f_{i,j}}{ℎ^2} $$

$$∆f_{i,j}=\frac{∂^2f_{i,j}}{∂x^2}+\frac{∂^2f_{i,j}}{∂y^2}≈\frac{f_{i−1,j}+f_{i+1,j}+f_{i,j−1}+f_{i,j+1−4}f_{i,j}}{ℎ^2} $$

✅ 网格上的Laplace算子。

P9

Boundary Conditions

The boundary condition specifies \(f_{i−1,j}\) if it’s outside.

A Dirichlet boundary: \(f_{i−1,j}=C\)

$$ ∆f_{i,j}≈\frac{C+f_{i+1,j}+f_{i,j−1}+f_{i,j+1}−4f_{i,j}}{ℎ^2}$$

A Neumann boundary: \(f_{i−1,j}=f_{i,j}\)

$$∆f_ {i,j} ≈ \frac{f_ {i+1,j}+f_ {i,j−1}+f_ {i,j+1}−3f_{i,j}}{ℎ^2}$$

✅ 至少有一个边界使用Dirithlet.否则会全部收缩为0.
✅ Neumann是约束相对关系,没有绝对数值,会有无穷多解。

P12

Diffusion

The process of applying Laplacian smoothing is called diffusion.

✅ Laplace的本质是与邻居做平均。


本文出自CaterpillarStudyGroup,转载请注明出处。

https://caterpillarstudygroup.github.io/GAMES103_mdbook/