P3
Linear Finite Element Method
P4
The Linear FEM Assumption
✅ 假设:三角形的形变是均匀的
In a nutshell, linear FEM assumes that for any point \(\mathbf{X}\) in the reference triangle, its deformed correspondence is: \(\mathbf{x=FX+c}\).
✅ reference triangle:三角形处于没有发生形变的静止的状态。
✅ \(\mathbf{X}\)和\(\mathbf{x}\)可以分别是 reference 和 deformed 三角形的顶点或内部点,公式都同样适用。
For any vector between two points, we can use F to convert it from reference to deformed:
$$
\mathbf{x} _{ba}=\mathbf{x} _b−\mathbf{x} _a=\mathbf{FX} _b+\mathbf{c} −\mathbf{FX} _a−\mathbf{c} =\mathbf{FX} _{ba}.
$$
P5
计算Deformation Gradient
Therefore, we can calculate the deformation gradient by edge vectors.
Problem: \(\mathbf{F}\) is related to deformation, but it contains rotation.
✅ 期望\(\mathbf{F}\)只包含形变量、不包含平移和旋转、因为刚体运动不应该有形变,所以要把形变提取出来。
✅平移已经在\(\mathbf{c}\)里面了,所以只需考虑旋转。
P6
从F中去除旋转
回顾SVD分解
Ideally, we need a tensor to describe shape deformation only. Recall that SVD gives \(\mathbf{F=UDV^T}\), where only \(\mathbf{V^T}\) and \(\mathbf{D}\) are relevant to deformation.
✅ \(\mathbf{V^T}\) 看上去是旋转、实际上是为了确定形变的方向、 \(\mathbf{U}\) 才是真正的旋转
✅ 目的:把\(\mathbf{F}\)中的\(\mathbf{U}\)去掉、可以先做 \(\mathbf{SVD}\) 分解再把\(\mathbf{U}\)去掉。但本文使用了更简单的方法
Green Strain
So we get rid of \(\mathbf{U}\) as: \(\mathbf{G} =\frac{1}{2} (\mathbf{F^TF−I} )=\frac{1}{2} (\mathbf{VD} ^2\mathbf{V} ^\mathbf{T} −\mathbf{I} )=\begin{bmatrix} \varepsilon _{uu} & \varepsilon _{uv}\\ \varepsilon _{uv} & \varepsilon _{vv} \end{bmatrix}\), Green strain.
✅ \(\mathbf{G}\) 是一个描述物体形变的有无和大小矩阵,且与关旋转
- If no deformation, \(\mathbf{G=0}\); if deformation increases, ||\(\mathbf{G}\)|| increases.
- Three deformation modes: \(\varepsilon _{uu}\), \(\varepsilon _{vv}\) and \(\varepsilon _{uv}\).
- \(\mathbf{G}\) is rotation invariant: if additional rotation \(\mathbf{R}\), then deformation gradient is \(\mathbf{RF}\) but green strain is the same: \(\mathbf{G} =\frac{1}{2} (\mathbf{F^TR^TRF−I} )=\frac{1}{2} (\mathbf{VD} ^2\mathbf{V} ^\mathbf{T} −\mathbf{I} )\).
P7
计算能量
Let \(\mathbf{G}\) be the the green strain describing deformation. We consider the energy density per reference area as: \(W (\mathbf{G})\).
✅用形变程度来定义能量。\(W\)代表单位面积上的能量,因此称为能量密度。总能量为单位能量\(\mathbf{X}\)面积.
✅ \(A^{ref}\) 为 reference status 下三角形的面积
✅ StVK是一种经典的能量密度函数(Strain Energy Density Function), 在力学中不常用,但在图形学中很常用、原因是简单
✅ S 是一个与力有关的物理量。会在FVM内容中进一步解释。
✅ 能量对位移求导是力。形变是一种位移。能量密度对位移求导是一种类似于力的密度的量。
P8
计算Forces
Given everything we have, we can now calculate the forces.
✅ 力是形变施加到顶点上的力
✅ 绿色部分是上一页S中的内容、灰色部分将在下一页推导。
P9
方法一
Recall that,
❗ \(\mathbf{F}\)不是力,是deformation gradient.
✅ 假设a,b,c,d是形变后的顶点。
By definition,
$$
\mathbf{G} =\frac{1}{2} (\mathbf{F^TF−I} )=\begin{bmatrix}
\frac{1}{2}(a\mathbf{x} _{10}+c\mathbf{x} _{20})^\mathbf{T} (a\mathbf{x} _{10}+c\mathbf{x} _{20})−\frac{1}{2} & \frac{1}{2}(a\mathbf{x} _{10}+c\mathbf{x} _{20})^\mathbf{T} (b\mathbf{x} _{10}+d\mathbf{x} _{20})\\
\frac{1}{2}(a\mathbf{x} _{10}+c\mathbf{x} _{20})^\mathbf{T} (b\mathbf{x} _{10}+d\mathbf{x} _{20}) & \frac{1}{2}(b\mathbf{x} _{10}+d\mathbf{x} _{20})^\mathbf{T} (b\mathbf{x} _{10}+d\mathbf{x} _{20})−\frac{1}{2}
\end{bmatrix}
$$
So:
$$ \frac{∂\varepsilon _{uu}}{∂\mathbf{x} _1}=a(a\mathbf{x} _{10}+c\mathbf{x} _{20})^\mathbf{T} \quad\quad \frac{∂\varepsilon _{vv}}{∂\mathbf{x} _1}=b(b\mathbf{x} _{10}+d\mathbf{x} _{20})^\mathbf{T} \quad\quad \frac{∂\varepsilon _{uv}}{∂\mathbf{x} _1}=\frac{1}{2} a(b\mathbf{x} _{10}+d\mathbf{x} _{20})^\mathbf{T} +\frac{1}{2} b(a\mathbf{x} _{10}+c\mathbf{x} _{20})^\mathbf{T} $$
$$ \frac{∂\varepsilon _{uu}}{∂\mathbf{x} _2}=c(a\mathbf{x} _{10}+c\mathbf{x} _{20})^\mathbf{T} \quad\quad \frac{∂\varepsilon _{vv}}{∂\mathbf{x} _2}=d(b\mathbf{x} _{10}+d\mathbf{x} _{20})^\mathbf{T} \quad\quad \frac{∂\varepsilon _{uv}}{∂\mathbf{x} _2}=\frac{1}{2} c(b\mathbf{x} _{10}+d\mathbf{x} _{20})^\mathbf{T} +\frac{1}{2} d(a\mathbf{x} _{10}+c\mathbf{x} _{20})^\mathbf{T} $$
✅ \(\mathbf{x}\)为current边的矩阵,\(\mathbf{r}\)为reference边的矩阵。
P10
方法二
✅ 把 P9 代入 P8 得到 P10
✅ 上一页推导方法从定义出来,过程简单,但很容易出错。这里用矩阵来简化计算,得到同样的结果。
P11
结论
In conclusion, we have:
$$ \mathbf{f} _1=−A^{\mathrm{ref} }\mathbf{FS} \begin{bmatrix} a\\ b \end{bmatrix} \quad\quad \mathbf{f} _2=−A^{\mathrm{ref} }\mathbf{FS} \begin{bmatrix} c\\ d \end{bmatrix} $$
$$ \begin{bmatrix} \mathbf{f} _1 &\mathbf{f} _2 \end{bmatrix}= − A ^{\mathrm{ref} }\mathbf{FS} \begin{bmatrix} \mathbf{X} _{10} & \mathbf{X} _{20} \end{bmatrix}^\mathbf{−T} $$
✅ \(f_0=-f_1-f_2\)
P12
Implementations
🔎 Volino et al. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. TOG
Only talks about cloth (2D reference -> 3D deformation)
- What about tetrahedron (3D reference -> 3D deformation)?
- Same idea, but everything is now in 3D.
- Deformation gradient \(\mathbf{F} \in \mathbf{R} ^{3×3}\)
- Green strain \(\mathbf{G} \in \mathbf{R} ^{3×3}\)
- Stress tensor \(\mathbf{S} \in \mathbf{R} ^{3×3}\)
- Forces \(\mathbf{F}_i \in \mathbf{R} ^3\)
本文出自CaterpillarStudyGroup,转载请注明出处。
https://caterpillarstudygroup.github.io/GAMES103_mdbook/