Pix2Video: Video Editing using Image Diffusion

  • Given a sequence of frames, generate a new set of images that reflects an edit.
  • Editing methods on individual images fail to preserve temporal information.

✅ 没有 3D diffusion model,只是用 2D diffusion model 生成多张图像并拼成序列。关键在于保持时序的连续性。

  • Leverage a pretrained per-frame depth-conditioned Stable Diffusion model to edit frame by frame, to maintain motion consistency between source video and edited video
  • No need for training/finetuning

P195

How to ensure temporal consistency?

Obtain initial noise from DDIM inversion

✅ (1) 用每一帧的原始图像的 inversion 作为 init noise.
✅ (2) 下一帧的生成会引用上一帧的 latent.
✅ (3) 生成的中间结果上也会有融合。

P196

Self-Attention injection:

Inject self-attention features from the previous frame in U-Net for generating the current frame

  • Use the latent of the previous frame as keys and values to guide latent update of the current frame

✅ reconstruction guidance,使生成的 latent code 与上一帧接近。

✅ (1) 使用 DDIM inversion 把图像转为 noise.
✅ (2) 相邻的 fram 应 inversion 出相似的 noise.
✅ 使用 self-attention injection 得到相似的 noise.

P197

Result

P198