Processing math: 100%

定义:X是样本数据,每一行是一个数据,它有m个数据,每个数据有n个特征
X=[X(1)1X(2)1X(n)1 X(1)2X(2)2X(n)2  X(1)mX(2)mX(n)m]

$W_k$是求得的前k个主成分矩阵,每一行是一个主成分的单位方向,它有k个主成分方向,每个主成分的方向有n个维度
X=[W(1)kW(2)1W(n)1 W(1)2W(2)2W(n)2  W(1)kW(2)kW(n)k]

问:如何将样本X从N维转换成K维?
答:降维:把所有样本映射到K个主成分上
XWTk=Xk

还原:把降维后的数据还原到原坐标空间
XkWk=Xm

还原后的X与原X不同。

把PCA封装成类

import numpy as np class PCA: def __init__(self, n_components): """初始化PCA""" assert n_components >= 1, "n_components must be valid" self.n_components = n_components self.components_ = None def fit(self, X, eta=0.01, n_iters=1e4): """获取数据集的前n个主成分""" assert self.n_components <= X.shape[1], "n_components must not be greater than the feature number of X" def demean(X): return X - np.mean(X, axis=0) def f(w, X): return np.sum((X.dot(w)**2)) / len(X) def df(w, X): return X.T.dot(X.dot(w)) * 2. / len(X) # 把向量单位化 def direction(w): return w / np.linalg.norm(w) def first_component(X, initial_w, eta, n_iters=1e4, epsilon=1e-8): w = direction(initial_w) cur_iter = 0 while cur_iter < n_iters: gradient = df(w, X) last_w = w w = w + eta * gradient w = direction(w) if(abs(f(w, X)) - abs(f(last_w, X)) < epsilon): break cur_iter += 1 return w X_pca = demean(X) self.components_ = np.empty(shape = (self.n_components, X.shape[1])) for i in range(self.n_components): initial_w = np.random.random(X.shape[1]) eta = 0.001 w = first_component(X_pca, initial_w, eta) self.components_[i, :] = w X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w return self def transform(self, X): """将给定的X,映射到各个主成分分量中""" assert X.shape[1] == self.components_.shape[1] return X.dot(self.components_.T) def inverse_transform(self, X): """将给定的X反向映射回原来的特征空间""" assert X.shape[1] == self.components_.shape[0] return X.dot(self.components_) def __repr__(self): return "PCA(n_components=%d)" % self.n_components

使用PCA降维

准备数据

import numpy as np import matplotlib.pyplot as plt X = np.empty((100,2)) X[:,0] = np.random.uniform(0., 100., size=100) X[:,1] = 0.75 * X[:, 0] + 3. + np.random.normal(0, 10., size=100)

训练模型1

pca = PCA(n_components=2) pca.fit(X)

输入:pca.components_
输出:array([[ 0.75366776, 0.65725559], [-0.65723751, 0.75368352]])

训练模型2:降维

pca = PCA(n_components=1) pca.fit(X) X_reduction = pca.transform(X) X_restore = pca.inverse_transform(X_reduction)

输入:X_reduction.shape
输出:(100, 1)

输入:X_restore.shape
输出:(100, 2)

对比原始数据与降维再恢复后的数据

plt.scatter(X[:, 0], X[:, 1], color='b', alpha=0.5) plt.scatter(X_restore[:, 0], X_restore[:, 1], color='r', alpha=0.5) plt.show()