gamma参数的意义

加载数据

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets X, y = datasets.make_moons() X, y = datasets.make_moons(noise=0.15, random_state=666) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()

训练高斯核的SVM

from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.pipeline import Pipeline def RBFKernelSVC(gamma=1.0): return Pipeline([ ('std_scaler', StandardScaler()), ('rbfSVC', SVC(kernel='rbf', gamma= gamma)) ]) svc = PolynomialKernelSVC() svc.fit(X, y)

绘制决策边界

def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1), np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1) ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new) zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, cmap=custom_cmap) plot_decision_boundary(svc, axis=[-1.5,2.5,-1.0,1.5]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()

gamma取不同值的效果对比

gamma=1.0gamma=100gamma=0.5gamma=0.1gamma=10

可以把训练的效果看成是俯视这些样本点。某一类的每个样本点形成了一个以它为中心的正态分布。
gamma越大,这个分布的圈就越小。