import numpy as np import matplotlib.pyplot as plt np.random.seed(666) x = 2 * np.random.random(size=100) y = x * 3. + 4. + np.random.normal(size=100) X = x.reshape(-1, 1) plt.scatter(x, y) plt.show()

使用梯度下降法训练

def J(theta, X_b, y): try: return np.sum((y - X_b.dot(theta))**2) / len(X_b) except: return float('inf') def dJ(theta, X_b, y): ret = np.empty(len(theta)) ret[0] = np.sum(X_b.dot(theta) - y) for i in range(1, len(theta)): ret[i] = (X_b.dot(theta) - y).dot(X_b[:, 1]) return ret * 2 / len(X_b) def gradient_descent(X_b, y, initial_theta, eta, n_iters = 1e4, epsilon=1e-8): theta = initial_theta i_iter = 0 while i_iter < n_iters: gradient = dJ(theta, X_b, y) last_theta = theta theta = theta - eta * gradient if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon): break i_iter += 1 return theta X_b = np.hstack([np.ones((len(x), 1)), X]) initial_theta = np.zeros(X_b.shape[1]) eta = 0.01 theta = gradient_descent(X_b, y, initial_theta, eta) theta

输出结果:
array([4.02145786, 3.00706277])

封装线性回归算法

import numpy as np from sklearn.metrics import r2_score class LinearRegression: def __init__(self): """初始化Linear Regression模型""" self.coef_ = None self.interception_ = None self._theta = None def fit_normal(self, X_train, y_train): """根据训练数据集X_train, y_train训练Linear Regression模型""" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train" X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train) self.interception_ = self._theta[0] self.coef_ = self._theta[1:] return self def fit_gd(self, X_train, y_train, eta=0.01, n_iters = 1e4): """根据训练数据集X_train, y_train,使用梯度下降法训练Linear Regression模型""" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train" def J(theta, X_b, y): try: return np.sum((y - X_b.dot(theta))**2) / len(X_b) except: return float('inf') def dJ(theta, X_b, y): ret = np.empty(len(theta)) ret[0] = np.sum(X_b.dot(theta) - y) for i in range(1, len(theta)): ret[i] = (X_b.dot(theta) - y).dot(X_b[:, 1]) return ret * 2 / len(X_b) def gradient_descent(X_b, y, initial_theta, eta, n_iters = 1e4, epsilon=1e-8): theta = initial_theta i_iter = 0 while i_iter < n_iters: gradient = dJ(theta, X_b, y) last_theta = theta theta = theta - eta * gradient if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon): break i_iter += 1 return theta X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) initial_theta = np.zeros(X_b.shape[1]) self._theta = gradient_descent(X_b, y_train, initial_theta, eta) self.interception_ = self._theta[0] self.coef_ = self._theta[1:] return self def predict(self, X_predict): """给定待预测数据集X_predict,返回表示X_predict的结果向量""" assert self.interception_ is not None and self.coef_ is not None, "must fit before predict" assert X_predict.shape[1] == len(self.coef_), "the feature number of X_predict must equal to X_train" X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict]) return X_b.dot(self._theta) def score(self, X_test, y_test): """根据测试数据集X_test, y_test确定当前模型的准确度""" y_predict = self.predict(X_test) return r2_score(y_test, y_predict) def __repr__(self): return "LinearRegression()"

使用fit_gd

lin_reg = LinearRegression() lin_reg.fit_gd(X, y)

输入:lin_reg.coef_
输出:array([3.00706277])

输入:lin_reg.interception_
输出:4.021457858204859