训练数据集和测试数据集不能分别归一化。
测试数据集使用与训练数据集相同的mean和std做归一化
即
(x_test - mean_train) / std_train
scikit-learn中的Scaler的使用流程
使用scikit-learn中的StandardScaler
准备数据
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=666)
scikit-learn中的StandardScaler
from sklearn.preprocessing import StandardScaler
standardScaler = StandardScaler()
standardScaler.fit(X_train)
X_train_standard = standardScaler.transform(X_train)
X_test_standard = standardScaler.transform(X_test)
StandardScaler + KNN + accuracy
from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train_standard, y_train)
knn_clf.score(X_test_standard, y_test)
自己实现StandardScaler并封装成类
import numpy as np
class StandardScaler:
def __init__(self):
self.mean_ = None
self.scale_ = None
def fit(self, X):
"""根据训练数据集X获取数据的均值和方差"""
assert X.ndim == 2, "The dimension of X must be 2"
self.mean_ = np.array([np.mean(X[:,i]) for i in range(X.shape[1])])
self.scale_ = np.array([np.std(X[:,i]) for i in range(X.shape[1])])
def transform(self, X):
"""将X根据这个StandardScaler进行均值方差归一化处理"""
assert X.ndim == 2, "The dimension of X must be 2"
assert self.mean_ is not None and self.scale_ is not None, "must fit before transform!"
retX = np.empty(shape = X.shape, type = float)
for col in range(X.shape[1]):
retX[:, col] = (X[:,col] - self.mean_[col]) / self.scale_[col]
return retX