训练数据集和测试数据集不能分别归一化。
测试数据集使用与训练数据集相同的mean和std做归一化

(x_test - mean_train) / std_train

scikit-learn中的Scaler的使用流程

使用scikit-learn中的StandardScaler

准备数据

import numpy as np from sklearn import datasets iris = datasets.load_iris() X = iris.data y = iris.target from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=666)

scikit-learn中的StandardScaler

from sklearn.preprocessing import StandardScaler standardScaler = StandardScaler() standardScaler.fit(X_train) X_train_standard = standardScaler.transform(X_train) X_test_standard = standardScaler.transform(X_test)

StandardScaler + KNN + accuracy

from sklearn.neighbors import KNeighborsClassifier knn_clf = KNeighborsClassifier(n_neighbors=3) knn_clf.fit(X_train_standard, y_train) knn_clf.score(X_test_standard, y_test)

自己实现StandardScaler并封装成类

import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.scale_ = None def fit(self, X): """根据训练数据集X获取数据的均值和方差""" assert X.ndim == 2, "The dimension of X must be 2" self.mean_ = np.array([np.mean(X[:,i]) for i in range(X.shape[1])]) self.scale_ = np.array([np.std(X[:,i]) for i in range(X.shape[1])]) def transform(self, X): """将X根据这个StandardScaler进行均值方差归一化处理""" assert X.ndim == 2, "The dimension of X must be 2" assert self.mean_ is not None and self.scale_ is not None, "must fit before transform!" retX = np.empty(shape = X.shape, type = float) for col in range(X.shape[1]): retX[:, col] = (X[:,col] - self.mean_[col]) / self.scale_[col] return retX