import numpy as np from sklearn.metrics import r2_score class LinearRegression: def __init__(self): """初始化Linear Regression模型""" self.coef_ = None self.interception_ = None self._theta = None def fit_normal(self, X_train, y_train): """根据训练数据集X_train, y_train训练Linear Regression模型""" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train" X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train) self.interception_ = self._theta[0] self.coef_ = self._theta[1:] return self def fit_gd(self, X_train, y_train, eta=0.01, n_iters = 1e4): """根据训练数据集X_train, y_train,使用梯度下降法训练Linear Regression模型""" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train" def J(theta, X_b, y): try: return np.sum((y - X_b.dot(theta))**2) / len(X_b) except: return float('inf') def dJ(theta, X_b, y): return X_b.T.dot(X_b.dot(theta)-y) * 2. / len(X_b) def gradient_descent(X_b, y, initial_theta, eta, n_iters = 1e4, epsilon=1e-8): theta = initial_theta i_iter = 0 while i_iter < n_iters: gradient = dJ(theta, X_b, y) last_theta = theta theta = theta - eta * gradient if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon): break i_iter += 1 return theta X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) initial_theta = np.zeros(X_b.shape[1]) self._theta = gradient_descent(X_b, y_train, initial_theta, eta) self.interception_ = self._theta[0] self.coef_ = self._theta[1:] return self def fit_sgd(self, X_train, y_train, n_iters = 5, t0 = 5, t1 = 50): """根据训练数据集X_train, y_train,使用随机梯度下降法训练Linear Regression模型""" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train" def dJ_sgd(theta, X_b_i, y_i): return X_b_i.T.dot(X_b_i.dot(theta)-y_i) * 2. def learning_rate(t, t0, t1): return t0 / (t + t1) def sgd(X_b, y, initial_theta, n_iters, t0, t1): # n_iters:对所有的样本看几圈 theta = initial_theta m = len(X_b) i_iter = 0 for i_iter in range (n_iters): indexes = np.random.permutation(m) X_b_new = X_b[indexes] y_new = y[indexes] for i in range (m): gradient = dJ_sgd(theta, X_b_new[i], y_new[i]) last_theta = theta theta = theta - learning_rate(i_iter*m+i, t0, t1) * gradient return theta X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) initial_theta = np.zeros(X_b.shape[1]) self._theta = sgd(X_b, y_train, initial_theta, n_iters, t0, t1) self.interception_ = self._theta[0] self.coef_ = self._theta[1:] return self def predict(self, X_predict): """给定待预测数据集X_predict,返回表示X_predict的结果向量""" assert self.interception_ is not None and self.coef_ is not None, "must fit before predict" assert X_predict.shape[1] == len(self.coef_), "the feature number of X_predict must equal to X_train" X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict]) return X_b.dot(self._theta) def score(self, X_test, y_test): """根据测试数据集X_test, y_test确定当前模型的准确度""" y_predict = self.predict(X_test) return r2_score(y_test, y_predict) def __repr__(self): return "LinearRegression()"

测试数据 + sgd

m = 100000 x = np.random.normal(size=m) X = x.reshape(-1, 1) y = 4. * x + 3. + np.random.normal(0, 3, size=m) lin_reg = LinearRegression() lin_reg.fit_sgd(X, y, n_iters=2)

刚开始在代码中犯了个错误,没有把L78的i_iter改成i_iter*m+i, 导致每次训练得到的模型差点都非常大,且偏离正确值也非常大。
改掉之后就好了,
可以如果学习率使用固定值,不能得到很好的效果。

真实数据 + sgd

真实数据

from sklearn import datasets boston = datasets.load_boston() X = boston.data y = boston.target X = X[y<50.0] y = y[y<50.0]

预处理

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=666) from sklearn.preprocessing import StandardScaler standScaler = StandardScaler() standScaler.fit(X_train) X_train_standard = standScaler.transform(X_train) X_test_standard = standScaler.transform(X_test)

SGD

lin_reg = LinearRegression() %time lin_reg.fit_sgd(X_train_standard, y_train) lin_reg.score(X_test_standard, y_test)

n_iters对score和Wall time的影响

n_itersscoreWall time
50.776359477398159530.7 ms
500.8130771495096732271 ms
1000.8131205440883096462 ms

真实数据 + sklearn的SGD

from sklearn.linear_model import SGDRegressor sgd_lin = SGDRegressor() %time sgd_lin.fit(X_train_standard, y_train) sgd_lin.score(X_test_standard, y_test)

模型的得分差不多,但sklearn的SGD的速度明显快很多。
因为sklearn的SGD的实现过程与课程中有很大的不同。

视频还测试了SGDRegressor的n_iter参数。
这个参数在我用的sklearn版本中已经没有了。