import numpy as np import matplotlib.pyplot as plt from sklearn import datasets X, y = datasets.make_moons() # X.shape = (100, 2) # y.shape = (100,) plot_decision_boundary(poly_svc, axis=[-1.5,2.5,-1.0,1.5]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()

X, y = datasets.make_moons(noise=0.15, random_state=666) # 0.15可以理解为标准差 plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()

使用多项式特征的SVM

训练模型

from sklearn.preprocessing import PolynomialFeatures, StandardScaler from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline def PolynomialSVC(degree, C=1.0): return Pipeline([ ('poly', PolynomialFeatures(degree=degree)), ('std_scaler', StandardScaler()), ('linearSVC', LinearSVC(C=C)) ]) poly_svc = PolynomialSVC(degree=3) poly_svc.fit(X, y)

绘制模型

def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1), np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1) ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new) zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, cmap=custom_cmap) plot_decision_boundary(poly_svc, axis=[-1.5,2.5,-1.0,1.5]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()

使用多项式核函数的SVM

from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.pipeline import Pipeline def PolynomialKernelSVC(degree, C=1.0): return Pipeline([ ('std_scaler', StandardScaler()), ('kernelSVC', SVC(C=C, kernel='poly', degree=degree)) ]) poly_kernel_svc = PolynomialKernelSVC(degree=3) poly_kernel_svc.fit(X, y) plot_decision_boundary(poly_kernel_svc, axis=[-1.5,2.5,-1.0,1.5]) plt.scatter(X[y==0,0],X[y==0,1]) plt.scatter(X[y==1,0],X[y==1,1]) plt.show()