先回顾一下上一节课的代码
import numpy as np
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target.copy()
y[digits.target==9] = 1
y[digits.target!=9] = 0
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
log_reg.score(X_test, y_test)
输出:0.9755555555555555
skleran的Logical Regression中,通过discision score和threshold来判断分类结果。
默认情况下threshold = 0。
调整threshold值,精准率和召回率就会相应的变化。
这一节通过可视化的方式表现threshold和精准率、召回率之间的关系。
精准率和召回率的变化曲线
decision_scores = log_reg.decision_function(X_test)
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
import matplotlib.pyplot as plt
precision_scores = []
recall_scores = []
thresholds = np.arange(np.min(decision_scores), np.max(decision_scores), step=0.1)
for threshold in thresholds:
y_predict = np.array(decision_scores >= threshold, dtype='int')
precision_scores.append(precision_score(y_test, y_predict))
recall_scores.append(recall_score(y_test, y_predict))
plt.plot(thresholds, precision_scores)
plt.plot(thresholds, recall_scores)
plt.show()
可以根据这张图找到想要的threshold。
绘制precision-recall曲线
plt.plot(precision_scores, recall_scores)
plt.show()
scikit-learn中的precision-recall曲线
from sklearn.metrics import precision_recall_curve
precisions, recalls, thresholds = precision_recall_curve(y_test, decision_scores)
plt.plot(thresholds, precisions[:-1])
plt.plot(thresholds, recalls[:-1])
plt.show()
Note 1:precisions.shape = (145,),recalls.shape = (145,),thresholds.shape = (145,),这是因为“the last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold.”
Note 2:sklearn提供的precision-recall曲线自动只寻找了我们最关心的那一部分。
关于precision-recall曲线的理论说明
召回率急剧下降开始的点通常精准率-召回率最好的平衡点。
精准率-召回率曲线整体上是这样的曲线。用不同的算法或相同的算法的不同的超参数都能训练出各自的模型。每种模型都有不同的精准率-召回率曲线。
假如如图是两个模型的精准率-召回率曲线,那么明显可以得出结论外面曲线的模型优于里面曲线的模型。因此PR曲线也可以作为选择模型/超参数的指标。