代码实现KNN算法

import numpy as np from math import sqrt from collections import Counter def kNN_classify(k, X_train, y_train, x): assert 1 <= k <= X_train.shape[0], "k must be valid" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must equal to the size of y_train" assert X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train" distances = [sqrt(np.sum((x_train-x)**2)) for x_train in X_train] nearst = np.argsort(distances) topK_y = [y_train[i] for i in nearst[:k]] votes = Counter(topK_y) return votes.most_common(1)[0][0]

准备数据

import numpy as np raw_data_X = [[3.39, 2.33], [3.11, 1.78], [1.34, 3.36], [3.58, 4.67], [2.28, 2.86], [7.42, 4.69], [5.74, 3.53], [9.17, 2.51], [7.79, 3.42], [7.93, 0.79] ] raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] X_train = raw_data_X y_train = raw_data_y x = np.array([8.09, 3.36])

调用算法

predict_y = kNN_classify(6, X_train, y_train, x)

运行结果:predict_y = 1

什么是机器学习

KNN是一个不需要训练的算法
KNN没有模型,或者说训练数据就是它的模型

使用scikit-learn中的kNN

错误写法

from sklearn.neighbors import KNeighborsClassifier kNN_classifier.fit(X_train, y_train) kNN_classifier.predict(x)

这样写会报错:

原因是,predict为了兼容多组测试数据的场景,要求参数是个矩阵

正确写法

from sklearn.neighbors import KNeighborsClassifier kNN_classifier.fit(X_train, y_train) X_predict = x.reshape(1, -1) y_predict = kNN_classifier.predict(X_predict)

运行结果:predict_y[0] = 1

重新整理我们的kNN的代码

封装成sklearn风格的类

import numpy as np from math import sqrt from collections import Counter class kNNClassifier: def __init__(self, k): """初始化kNN分类器""" assert k >= 1, "K must be valid!" self.k = k self._X_train = None self._y_train = None def fit(self, X_train, y_train): """根据训练数据集X_train和y_train训练kNN分类器""" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must equal to the size of y_train" assert self.k <= X_train.shape[0], "the size of X_train must be at least k" self._X_train = X_train self._y_train = y_train return self def predict(self, X_predict): """给定待预测数据集X_predict, 返回表示X_predict的结果向量""" assert self._X_train is not None and self._X_train is not None, "must fit before predict" assert self._X_train.shape[1] == X_predict.shape[1], "the feature number of X_predict must be equal to X_train" y_predict = [self._predict(x) for x in X_predict] return np.array(y_predict) def _predict(self, x): """给定单个待测数据x,返回x的预测结果""" assert self._X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train" distances = [sqrt(np.sum((x_train-x)**2)) for x_train in self._X_train] nearst = np.argsort(distances) topK_y = [self._y_train[i] for i in nearst[:self.k]] votes = Counter(topK_y) return votes.most_common(1)[0][0] def __repr__(self): return "KNN(k=%d)" % self.k

使用kNNClassifier

knn_clf = kNNClassifier(k=6) knn_clf.fit(X_train, y_train) y_predict = knn_clf.predict(X_predict)

运行结果:predict_y[0] = 1