回归问题是指找到一根直线/曲线最大程度的拟合样本点。
不同的回归算法对“拟合”有不同的理解。
例如线性回归算法定义“拟合”为:所有样本点到直线的MSE最小
而SVM将“拟合”定义为:尽可能多的点被包含在margin范围内,取margin中间的直线。(与解决分类问题相反的思路)
margin的距离为超参数

加载数据

import numpy as np from sklearn import datasets boston = datasets.load_boston() x = boston.data y = boston.target from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=666)

训练模型

from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.svm import LinearSVR from sklearn.pipeline import Pipeline # SVR = Support Vector Regression # SVR和SVC的用法基本上一样 def StandardLinearSVR(epsilon=0.1): return Pipeline([ ('std_scaler', StandardScaler()), ('linearSVR', LinearSVR(epsilon=epsilon)) ]) svr = StandardLinearSVR() svr.fit(X_train, y_train) svr.score(X_test, y_test)

输出结果:0.6358140020058993