Image(提供动作信息)Text(提供外观信息)-2-Video

IDYearNameNoteTagsLink
1262025.7.22MotionShot: Adaptive Motion Transfer across Arbitrary Objects for Text-to-Video Generation1. 参考对象(动作信息来自图像)与目标对象(外观信息来自文本)外观或结构差异显著
2. 显示提取源和目标在外观上的语义匹配以及对应部分的形变关系,通过对源做warp得到目标的大致轮廓,以引作为condition引入视频生成
training-free,开源

Image(提供外观信息)-2-Video

强调符合物理规律

  1. 如何描述物理规律:LLM对物理的理解、特定的数据集、已有的物理模型
  2. 如何使用物理规律:数据集、损失
  3. 是否显示提取物理规律
IDYearNameNoteTagsLink
1062025.5.26Force Prompting: Video Generation Models Can Learn and Generalize Physics-based Control Signals1. 将物理力(全局力和点力)编码后作为生成条件引导生成
2. 构造少量数据集
3. 证明大TI2V模型 + 少量样本能得到比较好的泛化性
开源, CogVideoX + ControlNet,物理link
2025.5.1T2VPhysBench: A First-Principles Benchmark for Physical Consistency in Text-to-Video Generation文生视频,物理,评估link
962025.3.26PhysAnimator: Physics-Guided Generative Cartoon Animation静态动漫插图生成动画
1. 分割出可形变部分
2. 转成2D Mesh
3. FEM驱动2D Mesh
4. 根据2D Mesh形变生成光流
5. 光流驱动Image草图
6. 草图作为控制信号,生成视频
2D Mesh,FEM,ControlNet,光流,轨迹控制,SAMlink
2025Physdreamer: Physics-based interaction with 3d objects via video generation
2024.9.27PhysGen通过刚体物理仿真将单张图像与输入力转换为真实视频,证明从视觉数据推理物理参数的可能性;

强调时序一致性

IDYearNameNoteTagsLink
1302025.8.25Multi-Object Sketch Animation with Grouping and Motion Trajectory Priors

强调控制性

  1. 如何对控制信号进行表示
  2. 如何注入控制信号
IDYearNameNoteTagsLink
972025Draganything: Motion control for anything using entity representation1. 分割可拖动对象
2. 提取对象的latent diffusion feature
3. 路径转为高斯热图
4. feature和heatmap作为控制信号进行生成
轨迹控制,ControlNet,高斯热图,SAM,潜在扩散特征link
472024Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics拖拽控制的对象零件级运动的视频生成零件级运动数据集link

其它未归档

IDYearNameNoteTagsLink
2025.6.17VideoMAR: Autoregressive Video Generatio with Continuous Tokenslink
2025.5.29ATI: Any Trajectory Instruction for Controllable Video Generation视频生成中运动控制link
2025.5.26MotionPro: A Precise Motion Controller for Image-to-Video Generation通过交互式运动控制实现图像动画link
2025.5.23Temporal Differential Fields for 4D Motion Modeling via Image-to-Video Synthesis通过图像到视频(I2V)合成框架来模拟规律的运动过程link
2025.5.20LMP: Leveraging Motion Prior in Zero-Shot Video Generation with Diffusion Transformer文+图像+运动视频->视频link
2025.5.14CameraCtrl: Enabling Camera Control for Video Diffusion Models相机位姿控制的视频生成link
2025.5.4DualReal: Adaptive Joint Training for Lossless Identity-Motion Fusion in Video Customization文生视频link
2025.4.30Eye2Eye: A Simple Approach for Monocular-to-Stereo Video Synthesis文生3D视频link
2025Sparsectrl: Adding sparse controls to text-to-video diffusion models深度控制
2024Cinemo: Consistent and controllable image animation with motion diffusion models
2024.06Mimicmotion: High-quality human motion video generation with confidence-aware pose guidancepose控制
2024Vr-gs: A physical dynamics-aware interactive gaussian splatting system in virtual reality