P3

任务描述

  1. 图像去噪
  2. 图像超分
  3. 图像补全

输入:

输出:

基于某个预训练的diffusion model,在无condition的情况下,每张图像都符合diffusion生成模型的分布。当以某个特定的图像(模糊图像、低分辨率图像)时,期望能够得到的是对应的清晰、高分辨率的图像的分布。

P6

Replacement-based Methods

(Overwrites model prediction with known information)

IDYearNameNoteTagsLink
2021ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Kawar et al., "SNIPS: Solving Noisy Inverse Problems Stochastically", NeurIPS 2021
Chung et al., "Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction", CVPR 2022
Song et al., "Solving Inverse Problems in Medical Imaging with Score-Based Generative Models", ICLR 2022
Kawar et al., "Denoising Diffusion Restoration Models", NeurIPS 2022

P7

Reconstruction-based Methods

(Approximate classifier-free guidance without additional training)

Chung et al., "Diffusion Posterior Sampling for General Noisy Inverse Problems", ICLR 2023

✅ cfg 使用\((x,t)\)的 pair data 来近似 \(\nabla _{x_t} \log p_t(\mathbf{y}|\mathbf{x}_t)\),但此处没有 pair data,希望通过非训练的方法来得出。
✅ 公式基于马尔可夫推导。\(p(\mathbf{y}|\mathbf{x}_t)\) 可描述为 \(p(\mathbf{y}|\mathbf{x}_0)\) 的期望。然后把期望从外面移到里面。

P8
In the Gaussian case,

$$ p(\mathbf{y} |\mathbb{E} [\mathbf{x} _ 0|\mathbf{x} _ t])=-c||\mathcal{A} \mathbf{(\hat{x}} _ 0)-\mathbf{y} ||^2_2 $$

Maximizing the likelihood is minimizing the L2 distance between measured and generated!

Chung et al., "Diffusion Posterior Sampling for General Noisy Inverse Problems", ICLR 2023

✅ 在 diffusion 的同时做重建。

More

  • Video Diffusion/Pyramid DDPM: used for uper-resolution.
  • Pseudoinverse guidance: linear and some non-differentiable problems, e.g., JPEG
  • MCG: combines replacement & reconstruction for linear problems.

Others

  • CSGM: Posterior sampling with Langevin Dynamics based on the diffusion score model.
  • RED-Diff: A Regularizing-by-Denoising (RED), variational inference approach.
  • Posterior sampling: use RealNVP to approximate posterior samples from diffusion models.
IDYearNameNoteTagsLink
Chung et al., "Improving Diffusion Models for Inverse Problems using Manifold Constraints", NeurIPS 2022
Ryu and Ye, "Pyramidal Denoising Diffusion Probabilistic Models", arXiv 2022
Chung et al., "Diffusion Posterior Sampling for General Noisy Inverse Problems", arXiv 2022
Song et al., "Pseudoinverse-Guided Diffusion Models for Inverse Problems", ICLR 2023
Jalal et al., "Robust Compressed Sensing MRI with Deep Generative Priors", NeurIPS 2021
Mardani et al., "A Variational Perspective on Solving Inverse Problems with Diffusion Models", arXiv 2023
Feng et al., "Score-Based Diffusion Models as Principled Priors for Inverse Imaging", arXiv 2023

本文出自CaterpillarStudyGroup,转载请注明出处。

https://caterpillarstudygroup.github.io/ImportantArticles/