Diffusion on various 3D representations

IDYearNameNoteTagsLink
20213D Shape Generation and Completion through Point-Voxel DiffusionPoint-Voxel
2019Point-Voxel CNN for Efficient 3D Deep LearningPoint-Voxel
2022Zeng et al., "LION: Latent Point Diffusion Models for 3D Shape Generation"
2022Nichol et al., "Point-E: A System for Generating 3D Point Clouds from Complex Prompts点云
2022Hui et al., "Neural Wavelet-domain Diffusion for 3D Shape GenerationSDF
2022Chou et al., "DiffusionSDF: Conditional Generative Modeling of Signed Distance FunctionsSDF
2022Shue et al., "3D Neural Field Generation using Triplane Diffusion", arXiv 2022Nerf
2023Yang et al., "Learning a Diffusion Prior for NeRFs", ICLR Workshop 2023Nerf
2023Jun and Nichol, "Shap-E: Generating Conditional 3D Implicit Functions", arXiv 2023Nerf

P12

3D Shape Generation and Completion through Point-Voxel Diffusion

IDYearNameNoteTagsLink
20213D Shape Generation and Completion through Point-Voxel DiffusionA set of points with location information.
> ✅ 分支1:逐顶点的 MLP (对应图中 b)
✅ 分支2:VOX 可以看作是低分辨率的 points
✅ 优点是结构化,可用于 CNN
❓ VOX → points,低分辨到高分辨率要怎么做?
❓ 怎么把 voxel 内的点转换为 voxel 的特征?

2019Point-Voxel CNN for Efficient 3D Deep Learning✅ Completion:深度图 → 完整点
✅ 方法:(1) 基于深度图生成点云 (2) 用 inpainting 技术补全
✅ generation 和 completion 是两种不同的 task.
2022LION: Latent Point Diffusion Models for 3D Shape Generation✅ 1、latent diffusion model for point clouds.
✅ 2、point-voxel CNN 架构,用于把 shape 编码成 latent shape 及 lantent point.
✅ 3、diffusion model 把 latent point 重建出原始点。
2022Point-E: A System for Generating 3D Point Clouds from Complex PromptsPoint-E uses a synthetic view from fine-tuned GLIDE, and then ”lifts” the image to a 3d point cloud.
✅ point E task:文生成点云。
✅ 第1步:文生图,用 fine-tuned GLIDE
✅ 第2步:图生点,用 transformer-based diffusion model.

P16

Diffusion Models for Signed Distance Functions

SDF is a function representation of a surface.
For each location x, |SDF(x)| = smallest distance to any point on the surface.

IDYearNameNoteTagsLink
2022Neural Wavelet-domain Diffusion for 3D Shape Generation- Memory of SDF grows cubically with resolution
- Wavelets can be used for compression!
- Diffusion for coarse coefficients, then predict detailed ones.
✅ 这里说的 SDF,是用离散的方式来记录每个点的 distance.
✅ Wavelet 把 SDF 变为 coarse 系数,diffusion model 生成 coarse 系数,再通过另一模型变为 detailed

2022DiffusionSDF: Conditional Generative Modeling of Signed Distance FunctionsLatent space diffusion for SDFs, where conditioning can be provided with cross attention
✅ 原理与上一页相似,只是把 waveles 换成了 VAE.

P19

Diffusion Models for NeRF

Neural Radiance Fields (NeRF) is another representation of a 3D object.

✅ NeRF:用体的方式来描述 3D 物体
✅ (1) 从 diffusion 中提取 image (2)从 image 计算 loss (3) loss 更新 image (4) image 更新 NeRF.
✅ \((x,y,z,\theta ,\phi )\) 是每个点在向量中的表示,其中前三维是 world coordinate,后面两维是 viewing direction
✅ density 描述这个点有多透明。
✅ F 是一个小型的网络,例如 MLP.

P20


NeRF
(Fully implicit)


Voxels
(Explicit / hybrid)


Triplanes
(Factorized, hybrid)

Image from EG3D paper.

P21

✅ Nerf 可以有三种表示形式

  • Triplanes, regularized ReLU Fields, the MLP of NeRFs...
  • A good representation is important!


Triplane diffusion


Regularized ReLU Fields


Implicit MLP of NeRFs

Shue et al., "3D Neural Field Generation using Triplane Diffusion", arXiv 2022
Yang et al., "Learning a Diffusion Prior for NeRFs", ICLR Workshop 2023
Jun and Nichol, "Shap-E: Generating Conditional 3D Implicit Functions", arXiv 2023

✅ 这三种表示形式都可以与 diffuson 结合。
✅ 好的表示形式对diffusion 的效果很重要。


本文出自CaterpillarStudyGroup,转载请注明出处。

https://caterpillarstudygroup.github.io/ImportantArticles/