P31

Spherical Harmonics

$$ Y_ {lm}(\theta ,\phi )= N_ {lm}P_ {lm}(\cos \theta )e^ {Im \phi } $$

$$ \begin{align*} x& = \sin \theta \cos \phi \\ y & = \sin \theta \sin \phi\\ z & = \cos\theta \end{align*} $$

Complex sphere integration can be approximated by quadratic polynomial:

$$ \int\limits_{\theta =0}^{\pi } \int\limits_{\phi =0}^{2\pi } L(\theta,\phi )Y_{lm}(\theta ,\phi )\sin \theta d\theta d\phi \approx \begin{bmatrix} x \\ y \\ z\\ 1 \end{bmatrix}^TM\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} $$

利用球谐函数定义了一组基,通过对球谐基的加权平均,可以组合出任意复杂的球面。

P32

Spherical Harmonics 基

Spherical Harmonics, a mathematical system analogous to the Fourier transform but defined across
the surface of a sphere. The SH functions in general are defined on imaginary numbers

绿色表示正值,红色表示负值。
每一个维度的所有基都是正交的。
二阶导永远 0(光滑)。

P33

Spherical Harmonics Encoding